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1.0 INTRODUCTION

The report is organized into sections representing the phases of work performed in analyzing the

STS-87 (USMP-4) results. Section 1 briefly outlines the OARE system features, coordinates, and

measurement parameters. Section 2 describes the results from STS-87. The mission description,

data calibration, and representative data obtained on STS-87 are presented. Finally, Section 3

presents a discussion of accuracy achieved and achievable with OARE. Appendix A discusses the

calibration and data processing methodology in detail.

1.10ARE System Features

The Orbital Acceleration Research Experiment (OARE) contains a tri-axial aocelerometer which

uses a single free-floating (non-pendulous) electrostatically suspended cylindrical proofmass. The

accelerometer sensor assembly is mounted on dual-gimbal platform which is controlled by a

microprocessor in order to perform in-flight calibrations. Acceleration measurements are processed

and stored in the OARE flight computer memory and, simultaneously, the unprocessed data are

recorded on the shuttle payload tape recorder. These raw data are telemetered periodically to ground

stations at several hour intervals during flight via tape recorder playback (data dumps).

OARE's objectives are to measure quasi-steady accelerations, to make high resolution low-frequency

acceleration measurements in support of the micro-gravity community, and to measure Orbiter

aerodynamic performance on orbit and during reentry. There are several features which make the

OARE well suited for making highly accurate, low-frequency acceleration measurements. OARE is

the first high resolution, high accuracy accelerometer flight design which has the capability to

perform both bias and scale factor calibrations in orbit. Another design feature is the OARE sensor

electrostatic suspension which has much less bias temperature sensitivity than pendulous

accelerometers. Given the nature of the OARE sensor and its in-flight calibration capability, OARE

stands alone in its ability to characterize the low-frequency environment of the Orbiter with better

than 10 nano-g resolution and approximately 50 nano-g on-orbit accuracy.

1.2 Coordinate Systems

Two coordinate systems are used in this report -- the OARE axes centered at the OARE sensor

proofmass centroid and the Orbiter aircraft body axes centered at the Orbiter's center of gravity. The

direction from tail to nose of the orbiter is +X in both systems. The direction from port wing to

starboard wing is +Z in the OARE system and +Y in the Orbiter body system. The direction from

the Orbiter belly to the top of the Orbiter fuselage is +Y in the OARE system and -Z in the Orbiter

body system. This sensor-to-body coordinate alignment referred to above is the nominal flight

alignment and was utilized for OARE data collection during STS-87.

In discussions of OARE calibrations of bias and scale factor, the OARE reference system is used.

However, the flight acceleration data are given in the Orbiter body reference system. The sign

convention is such that when there is a forward acceleration of the Orbiter (such as the OMS firing),

this is then reported as a positive X-axis acceleration, even though a free particle may appear to

move in the -X direction relative to the accelerating shuttle. All accelerations given in this report
refer to the OARE location.



1.3 Sensor Measurement Parameters

There are three sensor ranges, A, B, and C, for each OARE axis, which are controlled by auto-

ranging software logic. The full scale ranges and resolutions (corresponding to one count) are given
in Table 1. In order to denote in the data when the sensor channel is driven into saturation, the

output is set to 1.5 times full scale of range A with the sign of the saturation signal included.

Table 1. OARE Sensor Ranges and Resolutions

Nominal Full Scale Range

Range Y & Z Axes

A 25,000

B 1,970

C 150

Range Y & Z Axes

A 762.9

B 60.12

C 4.578

in micre-Gs

X-Axis

I0,000

1,000

100

Resolution in nano-Gs

SFN in nano-Gs/count

X-Axis

305.2

30.52

3.052

2.0 STS-87 (USMP-4) MISSION RESULTS

This section describes the results from STS-87 as derived from post-flight processing of the trim-

mean OARE acceleration data stored on the on-board EEPROM. During the mission, preliminary

calibrations and accelerations were reported in near-real time by NASA Lewis Research Center using

the telemetered data from the payload tape recorder.

2.1 STS-87 (USMP-4) Mission Plan

The STS-87 adaptation parameters anticipated a mission of up to 17 days long. In order to make

better use of the calibration time, the software was modified prior to STS-73 so that only C-range

calibrations would occur in the "Quiet" mode, and calibrations would occur on all three ranges

during the "Normal" mode. Since past experience had indicated that the Scale Factor had minimal
variations and that, on-orbit, the instrument remains almost entirely in the C-range, the adaptation

parameters were selected to use most of the allotted calibration time for C-range bias calibrations in

order to obtain the most accurate measurements possible. When operating in the "Quiet" mode, C-

range bias calibrations are to be performed every 158 minutes, and a bias calibration begins within

one minute after the "Quiet" mode is asserted. A C-range scale factor calibration is to be performed

after every 15th bias calibrat,on in the "Quiet" mode. In the "Normal" mode, a full bias calibration is

to be performed eve_* 432 minutes, and a full scale factor calibration is performed after every 6th
bias calibration.



2.2 STS-87 Actual Mission Description

Launch for STS-87 was at about 2:46 p.m. EST on 19 November 1997. The actual length of the

STS-87 mission was 376.6 hours or about 15 days, 16 hours, 34 minutes with touch down at 7:20
a.m. EST on 5 December 1997. Shutdown occurred in REENTER mode under the condition of"re-

capture duration error" in sub-mode 4. This means that the OARE instrument continued to collect

data until the Y-axis signal was saturated for at least 2 minutes in the final REENTER sub-mode.

This is considered normal termination of the mission and represents adequate adaptation parameter

settings for the reenter file size and correct timing of the reenter discrete.

OARE was powered on during the launch. A Normal full bias calibration of all ranges on OARE

began at about 7.4 hours into the mission. The Normal Mode lasted until about MET of 152.3 hours

when the system was switched to Quiet mode.

During STS-87, 105 C-range bias measurements were made throughout the mission. 21 bias

measurements were made on the A and B ranges before 152.3 hours MET. There were 11 and 5

scale factor measurements made on the C and A&B ranges, respectively.

All engineering parameter values were within normal range. Hardware performance was normal.

2.3 STS-87 Data Analysis

This section treats the several analyses carried out on the STS-87 flight data and summarizes the

significant results. The processed acceleration data have already been delivered to the Microgravity

Measurements and Analysis Branch Program (MMAP) at NASA Lewis Research Center.

The Orbital Acceleration Research Experiment (OARE) is designed to measure quasi-steady

accelerations from below 10 nano-g up to 25 milli-g where quasi-steady indicates the frequency
range from 10-5 to 10"1Hz. To accomplish this, the sensor output acceleration signal is filtered with

a Bessel filter with a cut-off frequency of 1 Hz. and cut-off rate of 120 dB per decade The output

signal is initially processed at 10 samples per second and is then further processed and digitally

filtered onboard the OARE instrument with an adaptive trimmean filter prior to the normal EEPROM

storage. The trimmean data samples cover 50 second periods every 25 seconds. The regular 10

sample per second data were recorded on the payload tape recorder.

In flight, the OARE instrument is subjected to higher amplitude and higher frequency accelerations

(due to the Reaction Control System (RCS) thrusters, structural vibrations, and crew activities) in

addition to the quasi-steady accelerations due to the gravity gradient, on-orbit drag, slow shuttle

body rotations, and long period venting.

In order to obtain the optimum estimate of the quasi-steady acceleration under these conditions, a

robust adaptive estimator has been implemented as part of the OARE analysis system. The particular

estimator used is known as the Hogg Adaptive Trimmean estimator [1,2]. The bias estimate using

the trimmean estimator of the acceleration is critical to the accuracy of acceleration measurements.

During all previous missions, the data have been processed using the trimmean estimator because it

provides the best estimate of the quasi-steady acceleration.

It has been the conventional wisdom that the quasi-steady acceleration effects are the most relevant

to fluid experiments (as well as others) since in these experiments the processes have a finite reaction

time and are believed to be quite insensitive to high frequency accelerations. However, although the



structuralvibrations and crew activities induce only AC components of acceleration, the thruster

firings produce a significant DC component of acceleration even though it is mostly high frequency
relative to 0.1 Hz. The Trimmean filter tends to exclude these measurements from the 50 second

trimmean averages, and thus, these short thruster firings do not normally appear in the trimmean

processed data appearing in this report. In order to quantify these effects, the 10 sample per second

data recorded on the payload taper recorder would need to be processed. This has not been done in

this report, but was done on STS-75 [8].

Thus, for STS-87 (USMP-4) the only measure of acceleration presented is the 50 second trimmean

average calculated every 25 seconds as has been done on all previous OARE missions.

A detailed discussion of the data analysis undertaken for STS-87 is presented in Appendix A along

with the bias estimates using estimated measurement errors based upon the distributions of the

measured data. This mission incorporated a full weighted least squares estimate of bias as has been

done since STS-73. [6]

The complete digital acceleration data presented in this report, as well as the raw payload tape

recorder data at 10 samples per second which have not been processed by the trimmean filters, are

available from the Microgravity Measurements and Analysis Program (MMAP) at NASA Lewis

Research Center.[7]

The temperature environment was relatively harsh on STS-87. After an initial temperature pulse

during launch, the Shuttle was rotated into several aspect angles which cooled the sensor for long

periods of time during the flight and gave rise to sharp temperature transitions. The instrument

temperature in degrees Celsius (measured on the proofmass housing) is shown in Figure 1.
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2.4 Orbiter Body Axis Acceleration Results

The accelerations measured by OAKE at the OAKE location in the Shuttle Body Axes coordinate

system ( X, toward the nose; Y, toward the starboard wing; Z, down through the belly) are shown in

Figures 2a through 2d.

Figures 2a through 2d show the trimmean acceleration measured at the OARE location during the

entire OARE operational time. This measure of acceleration represents the acceleration due to the

quasi-steady forces in that the larger short-period pulses are effectively removed from the data by

this filter. The acceleration measurement set has small gaps in it during the periods when bias and

scale factor calibrations are being made.

This gives an overview of the data, but it may not be in enough detail to meet the requirements of

each experimenter. Also, the experimenter may want the acceleration transformed to the particular

experiment's location. For additional detail, the complete set of data is available from the PIMS

Group at Lewis Research Center. [7] The low frequency accelerations can also be calculated at the

experimenter's location by the PIMS group using the OARE measurements and other shuttle

parameters. Canopus Systems would be happy to answer any questions about OARE operations or

the processed OARE data at the OARE location.

2.5 STS-87 Anomalous Performance

OARE's performance on STS-87 was similar to that on previous missions The Z-axis C-range scale

factor calibration was still affected by jitter to a small degree.
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3.00ARE ACCURACY ANALYSIS

The OARE instrument provides high resolution measurements of sensor input axes accelerations,
3.05 nano.Gs in the X-axis and 4.6 nano-Gs for the Y and Z axes. The accuracy of these

measurements is primarily determined by the degree to which the instrument can be calibrated

over the time period of the measurements. Major sources of potential errors are the accuracy
obtainable from the bias and scale factor calibrations.

3.1 Bias Errors

On STS-87, the bias was measuredl05 times. From these measurements, the true bias was

estimated by the fitting procedure discussed in Appendix A. Potential errors in these bias

estimates arise from the statistical nature of the bias measurements as well as from potential
systematic errors which have not been identified. Based upon the analysis contained in Appendix

A, we estimate that the bias errors on range C are approximately 50 nano-Gs. These are

consistent with the earlier analysis contained in the STS-65 Final Report [5].

3.2 Scale Factor Errors

In the microgravity environment of the Orbiter, the quasi-steady trimmean acceleration

measurements are typically on the order of I micro-g or less. Under these conditions, the bias
errors are larger than the scale factor errors.

Measurements of the scale factors made during flight and those on the ground are now consistent
to within 1 to 2 percent. We estimate the scale factor errors to be about 1 to 2 percent of the

measured acceleration. These could be reduced with further study. At a 1 micro-g level, this

corresponds to a 10 to 20 nano-G error. These should be added in quadrature with the bias errors.

So overall, this gives estimated errors for the on-orbit acceleration measurements of about 50 to 60
nano-Gs. Scale Factors were estimated from the Scale Factor measurements made on this mission.

3.3 Quasi-Steady Acceleration Measurements

As indicated, the primary OARE data recorded on the flight computer is processed through an
adaptive trimmean filter. This trimmean filter provides a near optimum estimate of the mean of

the quasi-steady acceleration population of measurements over the 50 second sampling period.

This estimate is particularly beneficial in the calculation of the bias estimate and the estimate of

the quasi-steady acceleration due to orbital drag, gravity gradient, and slow body rotations.

However, it tends to reject the effects of crew activity, thruster firings, and other exogenous

events. Experimenters may be interested in the regular average of the acceleration measurements

over the 50 second sample period or other acceleration measurement metrics. In any case, the

regular average and other filters could be applied to the payload tape recorder data for those

periods where the data exist.
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APPENDIX A

OARE DATA CALIBRATION AND PROCESSING

This Appendix reviews the methods used to calculate the Orbiter body triaxial acceleration

based on the OARE instrument measurements which were recorded on the EEPROM,

downloaded, and then processed by Canopus Systems. The method of estimating the sensor

bias has evolved over the past several missions; STS-73 was the first mission where a full

weighted least squares methodology has been implemented in estimating the instrument bias.

The Appendix begins with the instrument model (A 1), discusses the trimmean filter used in

processing the raw OARE accelerometry data (A2), presents the weighted least squares

estimate of the bias of the instrument (A3)and finally presents a short discussion of Scale

Factor calibration (A4).

A1 INSTRUMENT MODEL

The OARE instrument acceleration for each axis and range is calculated from an equation of

the form

A A = -SF C * SF N * (CTS - 32768 - BIAS) (eq. 1), where

A A is the calibrated actual acceleration in uGs,

SF C is the Scale Factor Calibration term,

SF N is the Nominal Scale Factor in uGs per count,

CTS is the counts out of the instrument A/D converter, and

BIAS is the estimated Bias in counts as a function of time and temperature,

where each of the terms is dependent upon the particular axis and range.

In the above equation, the number 32768 appears because the 16-bit A/D converter is single-

ended; this value is the offset required to obtain a zero measured acceleration for a zero input
acceleration when there is no bias.

An Actual Scale Factor SF A term is defined by

SF A = SF C * SF N (eq. 2).

Values of the nominal scale factor, SFN, are given in Table 1 of the main report for each

OARE axis and range. Values of SF C for the OARE X, Y, and Z axes are approximately

1.02, 1.11, and 1.10, respectively, but are determined through calibration on each STS

mission for each axis and range.

The output of the A/D converter provides a raw digital acceleration data sample which is

effectively processed at a rate of 10 times per second. Data are normally stored on the

EEPROM at a rate of once every 25 seconds, and these data represent the trimmean filtered

estimate of the quasi-steady acceleration value over a 50-second period.

AI



A2 HOGG ADAPTIVE TRIMMEAN FILTER USED IN PROCESSING OARE

ACCELERATION MEASUREMENTS

The OARE instrumentisdesigned to measure the quasi-steadyaccelerationfrom below I0

nano-Gs up to25 milli-Gsand over the quasi-steadybandwidth from 10-5 to 10"lHz. The

quasi-steadyaccelerationcomponents of primary interestarc thosedue to gravitygradient,

on-orbitdrag,inertialrotations,and perhaps long periodventingor gas leaks.However, the

instrumentissubjectedtohigher amplitude and higherfrequency accelerations(such as

structuralvibration,stationkeeping thrusterfirings,and crew effects)inadditionto the quasi-

steadyaccelerations.These higherlevelaccelerationsarenot well characterizednor

statisticallyinvariantover the OARE measurement periods.

In order to obtain a more optimum estimate of the quasi-steady acceleration under the

conditions of intermittent thruster firings and crew activities, a robust adaptive estimator has

been implemented. For a discussion of robust estimators, see Reference I. The particular

estimator implemented in OARE is known as the Hogg Adaptive Trimmean estimator and is

described in more detail in Reference 2.

In essence, the trimmean adaptive filter removes a percentage of the distribution from each

tail and then calculates the mean of the remaining distribution. It first measures the departure

of the sample distribution from a normal (Gaussian) distribution as measured by a parameter

called Q, then adaptively chooses the amount of the trim to be used on the distribution, and

finally calculates the mean of the remaining distribution after the trim. This filter is designed

to remove the effect of a contaminating distribution (such as a thruster firing) superimposed

on a normal distribution (of instrument noise, high frequency vibrations, crew activities,

quasi-steady accelerations, etc.),

As implemented, Q is defined by the following equation:

Q = [U(20%) - L(20%)]/[U(50%) - L(50%)] (eq. 3), where

U(X%) is the average of the upper X% of the ordered sample, and

L(X%) is the average of the lower X% of the ordered sample.

In the OARE case, the ordered sample has been a sample of 500 acceleration measurements

of the A/D output over a 50-second measurement period.

Q is a measure of the outlier content in the sample. For a Gaussian distribution, Q is 1.75;

for samples which have larger tails, Q > 1.75. The value of Q is used to estimate the extent

that the quasi-steady acceleration measurements may be contaminated by thruster firings,

crew activities, etc.

In order to improve the estimate of the quasi-steady acceleration, a trimmean is used to

estimate the mean of the quasi-steady population. A trim parameter alpha is determined by

the following algorithm:

A2



0.05 for Q <= 1.75
alpha(Q) = 0.5+ 0.35* (Q-1.75)/(2-1.75) for 1.75< Q < 2.0 (eq.4)

0.4 for Q>= 2.0,
wherealphais thefractionof thedistributionwhich is trimmedoff eachtail of theordered
distribution beforethemeanof theremainderof thedistributionis calculated.

Then, for anunderlyingdistributionof n points or measurements with a value of alpha, the

trimmean is given by

trimmean = [X(k+l ) + X (k+2) + ..... + X(n.k)]/(n-2*k), (eq. 5),

where k = alpha * n (eq. 6) and

X(i ), X(i+l),..., X(n ), is the ordered set ofn points making up the sample
distribution.

In summary, OARE measures the quasi-steady level of acceleration for each axis every 25

seconds by taking the trimmean of 50 seconds of AID counts (500 samples in total) according

to equations 3 through 6, and then substituting this trimmean for CTS in equation 1. It

should be noted that for large pulses in one direction, the effect of the trimmean is to shift the

estimate of the mean; it does not preserve the DC component in this case.

The trimmean is particularly appropriate for estimating the bias of the OARE instrument,
since one wishes to remove the effect of the thruster on the bias measurement if a thruster

firing should occur during the bias measurement period.

Data recorded on the EEPROM and available to support the acceleration calculations include

the trimmean of the 50-second distribution every 25 seconds, the Q of this sample

distribution, the Average Deviation from the trimmean of the distribution used to calculate

the trimmean, the instrument temperature, the Mission Elapsed Time (MET), and numerous

housekeeping parameters.

The widths of the 500 sample distributions (as measured by the standard deviations) are

almost entirely due to the environment aboard the shuttle and not due to sensor noise. This

has been illustrated in the figures of the STS-78 Final Report [6] and on the measured

acceleration on STS-87. On STS-78 and STS-87, the whole crew had common sleep

periods; this gave rise to very small variations in the data obtained during a sleep period.

During these periods, the instrument output is extremely quiet as opposed to periods when

there is crew activity.

A3 BIAS MEASUREMENTS AND ESTIMATED MEASUREMENT ERRORS

As can be seen in Equation I, the calculated acceleration depends upon the instrument bias.

This is a critical parameter in accelerometers that are designed to measure quasi-steady or DC

accelerations below 1 milli-G. For on-orbit conditions, the typical quasi-steady or DC

A3



acceleration is less than 1 micro-G. Thus, the bias estimate is absolutely critical to accurate

acceleration measurements in this regime.

The OARE accelerometer uses an electrostatically suspended proofrnass in order to minimize

the effects of temperature and mechanical suspension hysteresis on the bias. In addition,

OARE incorporates a two-axis gimbal calibration table by which the OARE instrument can

be calibrated on-orbit for bias and scale factor in each of its three axes.

A3.1 Bias Measurements

The bias measurement for a single axis consists of the following sequence: 1) measuring the

acceleration output in trimmean counts for 50 seconds in the normal table position for a given

axis (called BIASN), 2) rotating the input axis 180 °, and then 3) measuring the acceleration

output in tfimrnean counts (called BIAS I , for inverted position). Assuming that the actual

input acceleration remains constant during this period (about 125 seconds), as might be

expected for quasi-steady accelerations, then the bias can be calculated by

BIAS M = (BIAS N + BIASI)/2 - 32768 (eq. 7), where

BIAS M is the measured bias for a particular axis,

BIAS N is the bias measurement in the normal position, and

BIAS I is the bias measurement in the inverted position.

During a single mission, the bias is measured for each axis many times for the C-range.

These bias measurements then provide the basis for estimating the bias time history

throughout the mission. The bias estimates are ultimately determined by fitting a functional

form through these bias measurements.

A3.2 Sources of Noise Associated with the Bias Measurement

The sources of noise which contribute to measurement errors on the bias measurements are

largely associated with crew activity. The bias measurement accuracy depends upon the

input acceleration remaining constant during the time that the bias measurements are being

made. The time difference between the two positions used in the bias measurements is about

75 seconds. Clearly, the input acceleration is varying except during the times when the

whole crew is asleep. During most missions, one segment of the crew is active at all times.

Under these conditions, the bias measurements contain significant measurement errors which

cannot be eliminated. A method of estimating the measurement errors on the bias has been

developed and is discussed in Reference 5.

A3.3 Bias Estimates Based Upon Weighted Least Squares Fits

The bias was measured 105 times on STS-87 for each of the three axes on the C-range.

Using the methodology discussed in Reference 5, estimates of the measurement errors

associated with each bias measurement were calculated. The results for the OARE X, Y, and
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Z axesareshownin FiguresA-1, A-2, andA-3, respectively.Thebiasmeasurementsare
shownalongwith their associatedmeasurementerrorbars.

As canbeseen,thereis considerablevariation of the individual bias measurements, but the

variation is generally explained by the measurement errors associated with the bias

measurements. There are a few bias measurements which are widely separated from the

others. These could be a result of thruster firing during the bias sequence. During the times

that the crew was inactive, measurements were more accurate as indicated by the smaller

estimated measurement errors.

The bias can be characterized by a linear sum of terms which depend upon time and

temperature. For this mission as a result of the sharp changes in temperature, we found it
advantageous to add an additional term corresponding to a first order lagged temperature

Tlag. This term corresponds to a solution of the 1st order linear differential equation
t2*dTlag/dt + Tlag = T where the forcing function T is the sensor temperature. Except for

this additional term, we have fitted the measured bias data in the same manner as all the
missions since STS-62 [3] with a function of the following form:

Bias = A 1 + A2*e-(t/t0) + A3* e-(t/tl) + A4*T + A5*Tlag(t2) (eq. 8),

where A1, A 2, A3, A4, A5, tO, tl, and t2 are fitted coefficients, t is the mission elapsed time

in hours, and T is the instrument temperature in degrees Celsius. t2 is the fitted time constant

corresponding to a lag time.

OARE X-AXIS C-RANGE BIAS ESTIMATE
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Figure A-1. Bias Measurements and Fitted Estimate for OARE X-Axis on STS-87.
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OARE Y-AXIS C-RANGE BIAS ESTIMATE WITH LAGGED TEMP
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Figure A-2. Bias Measurements and Fitted Estimate for OARE Y-Axis on C-range.
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Figure A-3. Bias Measurements and Fitted Estimate for OARE Z-Axis on C-Range.

A weighted least squares procedure was used to determine the coefficients for all ranges. As

part of the fitting procedure, several data, which were significantly off the fitted curve or

which appeared to occur when there was thruster activity as indicated by large acceleration

signals, were removed from those included in the fit and the fitting procedure was repeated

for the C-range fits. The plots show all the data points whether they were included in the fit
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or not. For the B and A ranges, fits were obtained constraining the time constants to be the

same as on the C range, while the A coefficients were fit. Results from these fits are shown

in the following table.

The bias calculated by equation 8 is then used to estimate the actual bias during the mission

as a function of MET and instrument temperature. This bias is then used to calculate the

actual acceleration using equation 1. We believe that the error in the acceleration

measurements associated with this bias estimation procedure is about 50 nano-Gs. The error

could be further reduced if there were more quiet periods during the mission when a low

noise bias calibration could be performed.
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Table A-1. STS-87 Bias Fits to EEPROM Data

OARE X-AXIS

Range

Fitted Constant A1 (counts)

Fitted Constant A2 (counts)

Fitted Constant A3 (counts)

Fitted Constant A4 (counts/degree C)

Fitted Constant A5 (counts/degree C)

Fitted Constant tO (hours)

Fitted Constant tl (hours)

Fitted Constant t2 (hours)

R-Squared of Fit

Number of Measurements

Degrees of Freedom

OARE Y-AXIS

A

9.60

-5.68

-1.19

0.1839

0.1364

36

10.8

33[

0.999

B C

-85.24 -903.19

10.53 397.19

-42.07 -1211.94

0.2729 4.7951

1.6414

36

10.8

33

0.999

12.9773

36

10.8

33

0.999

100

92

C

204.67

none

none

-4.1716

-5.4325

Range
Fitted Constant A1

;'itted Constant A2 (term not used)

Fitted Constant A3 (term not used)

Fitted Constant A4

Fitted Constant A5

Fitted Constant tO

Fitted Constant tl

A

16.10

20 20

15 15

none

none

-0.8695

-0.0326

none

none

Fitted Constant t2 7.5

R-Squared of Fit 0.995

Number of Measurements 20
17Degrees of Freedom

OARE Z-AXIS

B

25.86

none

none

-0.9025

-0.2937

none none

none none

7.5 7.5

0.967 0.971

20 100

17 96

Range A B C

Fitted Constant A1 159.14 208.43 1328.14

Fitted

Fitted

Constant A2 (term not used)

Constant A3 (term not used)

Fitted Constant A4

Fitted Constant A5

Fitted Constant tO

Fitted Constant tl

:Fitted Constant t2

!R-Squared of Fit

Number of Measurements

Degrees of Freedom

none

none

0.3053

-0.0118

none_

none

5.8

0.999

20

17

none none

none none

0.0280

0.3831

none

none

5.8

0.999

20

17

-0.4786

4.7919

none

non_

5._

0.99_

10(

9(
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A4 SCALE FACTOR CALIBRATION

Scale factor measurements are made by applying a known non zero signal to the sensor and

electronics for each channel and each range. These measurements may be contaminated by

noise in the external environment or by internal noise in several forms.

For OARE, the method of scale factor calibration involves rotating the Motor/Table

Subsystem (MTS) (sometimes called "the table") at a known angular rate 0J with a fixed

sensor to center-of-rotation offset radius r. The known signal is thus the controlled

centripetal acceleration. While collecting scale factor data, the sensor also experiences a bias

(assumed constant) and is exposed to an external signal. Data collected before and after the

scale factor slew assists in removing the bias and extemal signal effect.

The basic scale factor measurement model is shown in Figure A-4.

$

$F

b

Figure A-4. Scale Factor Measurement Model

From this model, the kth measurement Yk is given by

y, =(rto' +s,)/SFA+b, (eq. 9),

where s k is the signal at the k th measurement time and b k is the internal bias at the k th

measurement time. We assume that to is constant throughout the slew. We also assume that

s k contains two components: (1) an acceleration signal which is fixed with respect to the

MTS base throughout the slew and (2) a noise input with zero mean. To eliminate noise,

consider averages of the measurements over the data set (with length n)

n

y=(rto'+l_.s,)/SF_+_ (eq. 10),
n lzl

where (-) is the average value of ().

From this equation we can find the actual scale factor SF A. Here, y is the average of the

measurements and ra,"2 is known. The remaining unknown, s k, is a combination of the

external signal and noise. This is related to the midpoint measurement (MP). During the

slew, the sensor records varying magnitudes of the external signal. The bias and centripetal

acceleration, however, remain fixed in magnitude. If the measurements are centered around

the midpoint, the midpoint measurement can be used to estimate this external signal and

remove it from the scale factor equation. It can be shown that the influence that the external

signal and bias have on the scale factor measurements is related to the sinc function (sin
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(x)/x) of the angulartravel. Theactualscalefactorcanthenbefound from thefollowing
equation:

I/SF_=_-MP(sin(6)/6)-(l-(sin(6)/6))b (eq. 11).
r(.0a

Previous analysis has shown that these scale factors vary by less that 2% [7].

Table A-2. Scale Factor Correction Factors for STS-87 OARE Axes and R_,nges

AXIS RANGE VALUE

X A 1.037

X B 1.023

X C 1.011

Y

Y

Y

Z

Z

Z

A 1.132

B 1.136

C 1.129

A 1.122

B 1.123

C 1.116"

*This Scale Factor Correction was computed from the B range measurement.
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